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The motion of bodies through fluid at low Reynolds number is appreciably affec- 
ted by the container walls. Consequently the Stokes-flow theory due to  Batchelor 
(1970) and others for a slender body falling in an unbounded fluid is difficult to 
test experimentally unless it is extended to take account of nearby boundaries. 
Theoretical expressions are given here for certain drag coefficients of a circular 
cylindrical slender rod of finite length falling dose to a single plane wall or falling 
midway between two parallel plane walls. Experiments with a very viscous liquid 
are described in which cylinders of small thickness-to-length ratios (ranging from 
1:lO to 1:lOO approximately) are made to fall in suitable orientations. From 
their times of fall over a measured distance experimental drag coefficients are 
determined and compared with the corresponding theoretical value from the 
extension of Batchelor’s theory. For rods falling in a horizontal orientation the 
theoretical and experimental results are consistent within the order of accuracy 
of the experiments. However, when results are compared for rods falling in a 
vertical orientation there is a significant difference for which possible explana- 
tions are presented. 

1. Introduction 
The recent interest in slender-body Stokes-flow theory expressed by Taylor 

(1969), Batchelor (1970), Cox (1970, 1971), Tillett (1970), Clarke (1972) and 
Weinberger (1972) has created a need for a comparison between the predictions 
of this theory and some corresponding experimental results. 

It appears that direct testing of the theory for a slender body falling in an  
unbounded fluid is difficult, because the length of the slender body would have 
to be simultaneously large compared with its thickness and small compared with 
the distance from the centre of the body to the nearest wall of the container. 

Only a few experiments seem to have been previously reported (White 1946; 
Jones & Knudsen 1961). Recently Dr S.Thompson communicated to me the 
results of his slender-body experiments carried out at the Ministry of Works, 
Wellington, New Zealand. Although each of these experimenters referred to the 
influence of the dimensions of the containingvessel on the drag coefficient of 
long slender cylinders in the creeping-motion range, the lack of well-established 
wall-correction factors has prevented any useful comparison between theory and 
experiment. 

41 FLI 58 



642 N .  J. de Mestre 

This suggests that a more detailed analysis of the wall effects on a falling slender 
body is worthwhile. From the ensuing theory it can be deduced that it is not 
possible for a rod falling near a plane wall (or between two plane walls) to maintain 
a particular orientation except in a few special situations. This has been con- 
firmed by experimental observation and consequently the present paper produces 
appropriate Stokes-flow expressions for the drag coefficient of a circular cylinder 
falling in (i) a horizontal orientation near a single plane wall, (ii) a horizontal 
orientation midway between two parallel plane walls and (iii) a vertical orienta- 
tion midway between two parallel plane walls. In  each of these problems the 
axis of the cylinder is parallel to a wall, and the orientation remains steady during 
the fall. (The wall-effect analysis may prove useful in its own right; a recent paper 
by Blake (1971) points to the use of slender-body theory for a body near a wall in 
modelling the movement of micro-organisms in the vicinity of microscope 
slides.) 

The mathematical analysis extends the work of Batchelor (1970) and is based 
on the use of point force singularities, usually referred to as Stokeslets, to replace 
the effect of the finite cylindrical rod. Expressions which include the drag effects 
of these walls are derived with the aid of a mirror-image technique due to Lorentz 
(1896) for (i) and an extension of the technique due to Faxen (1923) for (ii) and 
(iii). 

Suitable experiments associated with the above three problems have been per- 
formed. These involve a rectangular tank filled with liquid glucose in which metal 
rods of various small thickness-to-length ratios are induced to fall. Each rod 
moves with its axis parallel to a long wall and such that its centre is equidistant 
from both short walls, the latter being a large distance apart to reduce their 
effect on the drag. In  these experiments the terminal speed of a rod is measured, 
followed by the terminal speed of a tiny standard sphere to ascertain the liquid’s 
viscosity. Certain basic measurements of the rod and the standard sphere are 
then combined with these speeds to yield experimental drag coefficients for 
comparison with the values from the slender-body, wall-corrected mathematical 
analysis. 

2. Slender-body theory including wall effects 
Suppose a rigid rod in the shape of a long thin circular cylinder of length 21 

and radius R, is falling through a viscous fluid. The rod is considered to be a 
slender body if its length is large compared with its diameter, and it is con- 
venient to define a thickness-to-length parameter 

E = {In (2l/B0)}-1, 

which is small for slender bodies. 
The viscous fluid is disturbed as the rod falls, and in slender-body theory the 

associated flow field at low Reynolds number is investigated by looking at an 
almost equivalent problem in which the falling rod is replaced by a line distribu- 
tion of Stokeslets of unknown strengths along the axis of the cylinder. For a rod 
falling longitudinally or transversely in unbounded fluid Batchelor ( 1970) 
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obtained approximate expressions for these unknown strengths by employing 
the no-slip condition on the curved boundary of the rod. If walls are present as 
boundaries of the fluid it is expected that these expressions for the unknown 
Stokeslet strengths will be modified. 

Undoubtedly the simplest boundary geometry to consider is that of a plane 
wall. However, analysis and experiment indicate, as will be shown, that a rod 
falling in a vertical orientation parallel to a single plane wall cannot maintain this 
particular orientation. Therefore the wall effects for a rod falling midway between 
two parallel vertical walls are also considered since the vertical orientation is 
preserved in this case. 

The method used in this paper to obtain the wall-correction factor for the drag 
on a rod falling through a viscous fluid in the presence of a single wall is essentially 
a mirror-image technique. When this method is applied to the double-wall 
situation it gives a wall-correction factor in the form of a series that is of little 
practical use. The double-wall situation is investigated more profitably by an 
adaptation of Faxen’s (1923) technique for a sphere falling between two parallel 
walls. Hence the single-wall and double-wall situations are considered separately. 

In  the application of both techniques it is convenient to choose a set of axes 
that are fixed with respect to the moving rod. It then follows that, when the no- 
slip condition is satisfied on both the rod and the walls, the perturbation velocity 
due to the line distribution of Stokeslets is equal to the velocity of the rod at all 
points of the rod’s surface and is zero everywhere on the walls. 

2.1. Horizontal orientation, single plane wall 

For a rod in a horizontal orientation moving transversely with velocity U, 
parallel to a fixed vertical plane wall, a rectangular set of co-ordinate axes is 
chosen to move with the rod. The origin is at the centre of the rod, the x axis 
is parallel to the rod, the y axis points in the direction of the rod’s motion, 
and the z axis is perpendicular to the wall (see figure 1). If the rod is a dis- 
tance L from the wall, the equation of the wall’s surface is z = L. 

Suppose a line distribution of Stokeslets with strengths (O,Pl(x), 0 )  covers the 
portion - 1 < x < + 1, y = 0, z = 0 of the cylinder’s axis; then for flows in which 
inertia forces are neglected the approach employed by Batchelor (1970) formu- 
lates the perturbation velocity components (wo, vo, wo) and the pressure p o  at 
any point (x, y ,  x )  for an unbounded fluid as 

where ri = ( x  - x’)2 + y2 + z2 and denotes the dynamic viscosity of the fluid. 
14-2 
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FIGURE I.  Cylindrical rod with a horizontal orientation falling parallel to a single plane 
vertical wall (z  = L)  or midway between the two parallel walls (z = f L). 

To satisfy the no-slip condition on the wall, a new solution (a1, vl, wl) of the 
creeping-motion equations is added to the solution (u,, v,, w,) such that u1 = - uo, 
vl = - vo and w1 = - w,, when z = L. This new solution is obtained by using a 
distribution of image point forces with the same strengths as before along the 
line segment - I  < x < + I ,  y = 0, z = 2L. These yield a solution (up, v2, wz; p z )  
similar to the solution (uo, v0, w,; p,) except that z - 2L replaces z, and then the 
required solution (ul, v1, wl) is produced by the formulae (see Happel & Brenner 
1965, P. 87): , 

(U1,V1,W1) = ( -u2 ,  -v2 ,w2)-2(z -L)  -,-,- w,+- (z  - L)2 ( - ;x 7 - ;y 9 ;) Pz . (:x :y ;z) p 

Thus, within the accuracy afforded by replacing a rod by a line distribution of 
Stokeslets, the perturbation velocity components (u, v, w) at any point (x, y, z )  
of a viscous fluid in which a rod is falling in a horizontal orientation parallel to and 
distance L from a vertical plane wall are given by 

1 2L(x - L)  - y2 6Ly2(x - L)  - v = vo+-/+z( 1 ---+ 
87.v - 1  r2 Ti: 

1 yz 6Ly(z - 2L) ( z  - L)  
6 

where rg = (x - x')~ + y2 + ( x  - 2L)2. 



Fall of slender cylinders near boundaries 645 

The unknown strengths PI are now determined from the boundary condition 
that (u, v, w) equals (0, U,, 0) everywhere on the rod's surface. Strictly, the no- 
slip condition should allow for a rotation of the rod about its own axis caused by its 
proximity to the wall. It can be shown that the inclusion of this rotation effect 
does not alter the leading terms of the slender-body expansion for the Stokeslet 
strengths, therefore the simpIer no-slip condition is considered here. This leads 
to three integral equations for Fl, thus making provision for the introduction of 
higher-order Stokeslet singularities or even potential flow singularities if they are 
desired (Tuck 1964,1968; Taylor 1969; Tillett 1970). However, as pointed out by 
Batchelor (1970), the total force exerted by the rod on the fluid is determined by 
the Stokeslet distribution alone, and so it suffices in slender-body theory to derive 
Fl from the condition that v = U, at all points (xs, ys, z,) of the rod's curved surface 
(R, = (yt + zt)*, - I Q xs < +I). It will be indicated at  the end of this section how 
the neglected conditions (u = 0, w = 0 )  can be used. 

Hence from (2.2), 

This integral equation is solved approximately for Fl by invoking slender-body 
approximations. It is convenient at this stage to drop the s subscript, and with 
y = R, cos 6' and z = R, sin 6' it is seen that, as Roll -+ 0 and ROIL -+ 0, 

+ I  P1(xf)-F1(x) &: 
-z  ((x-xf)2+4L2}# 

axt - 2L2f s - z  ((3 - xf)2+ 4L2)f 
+ 1  Fl(l(xf) - F,(X) I4 = - 

+o y&') - F , ( Z ) P 0 ~ ]  +o [CF,(x') -F1(.)P07 
12 L2 

In the spirit of Batchelor's approach, the troublesome term in the expansion 
of Il which contains the azimuthal angle 0 is removed by considering an 'inner' 
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flow field solution in the neighbourhood of the rod. When this is obtained and the 
appropriate matching is carried out, the integral equation for F, becomes 

where 

E,(x) = Qarcsinh 

z+x I - x  
4 ( ( Z  + x)Z + 4L2}+ + 4(Z - x)2 + 4L2}?2’ 

+ 
To solve (2.4),  an iterative procedure is used with 

4 (x) = E F p ) ( X )  + e2Fl2)(x) + € 3 F l 3 ) ( X )  + . . . * 
When this is substituted into (2 .4)  and terms with the same powers of 8 are 
equated they yield 

Fl’) = 4 ~ p U , ,  

Piz) = 4npU1{E, - 3 - 4 In (1 - x2/12)}, 

Pf) = 4npU,(E1 - 4 - 4 In (1  - x2/12)}2 

The total drag on the rod is found to be 

g1 = 1 + h 1 ( Z )  ax 
- 1  

J 

where W, = 2 arcsinh (Z/L) - [l + (L/Q2]4 + (L/Z) and 

since the contribution to the total drag from the integral expression in Fi3) is 
zero. The expression (2.5) for the drag is valid even when the rod is quite close to 
the wall, whereas for non-slender bodies the mirror-image technique has so far 
only produced results that are valid in the far field. 
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If (2.5) is compared with the corresponding result for a rod falling in unbounded 
fluid [see Batchelor (1970), equation (S.l2)] it is observed that the dominant part 
of the drag due to the presence of the wall is 4npU,lW,s2. As blL --f 0, 

w, = 3 1 1 2 ~  + 0 ( 1 / ~ ) 3  

so 

This last result agrees with that deduced from Brenner (1962) for any body falling 
parallel to a single plane wall and at  a distance from it large compared with the 
dimensions of the body. 

A drag coefficient C, is obtained from (2.5) by dividing through by 4npU,I, 
which can be thought of as the drag on a sphere falling with the rod’s speed 
and whose radius is one third of the length of the rod. Thus 

(2.6) 

Since the drag on a body falling at terminal speed is balanced by its apparent 
weight, this drag coefficient can also be calculated in the form 

clE = Ri(p-p’ )  g/2pul, (2.7) 

where p is the density of the rod and p’ is the density of the fluid. This value CIE 
can be determined from experimental observations and will be compared with the 
value C, given in (2.6) which results from the theory. 

Expansions of u and w on the basis of slender-body theory can now be obtained 
on the rod’s surface by using (2.1) and (2.3) with the above solution for 3,. But 
u = 0 and w = 0 on the rod’s surface, and to enable these boundary conditions 
to be satisfied the correct leading higher-order Stokeslet singularities and 
potential flow singularities could now be obtained if they were required. 

Some interesting results occur for a slender rod falling parallel to a vertical 
plane wall but with orientations different from that considered in this section. 
If the rod falls with a vertical orientation or with its axis perpendicular to the 
wall the no-slip condition in the streamwise direction again yields slender-body 
approximations for the unknown Stokeslet strength distributions, but it is not 
possible to choose higher-order Stokeslet singularities or potential flow singu- 
larities that will give zero velocity components on the rod in the other two direc- 
tions. In  both these cases, the velocity distributions on the surface of the rod 
predict that the rod cannot maintain its specified orientation. The rod with the 
vertical orientation begins to tilt such that its leading edge moves away from the 
wall, while the rod normal to the wall tilts in such a way that the end further 
from the wall falls faster than the near end. Such predictions have been confirmed 
by experiment and indicate why the particular orientation of the rod considered 
in this section is the most useful one for experiments that involve a rod near a 
single wall. 
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2.2. Horizontal orientation, two parallel plane walls 

For a rod in a horizontal orientation moving transversely with velocity U2 
parallel to and midway between two fixed parallel vertical plane walls, the same 
rectangular co-ordinate system is used as in $2.1 with the walls at  z = L 
(see figure 1 ) .  Consider a line distribution of Stokeslets with strengths (0, F2(x), 0) 
covering the portion - 1  < x < +1, y = 0, z = 0 of the cylinder’s axis, then for 
flows involving an unbounded fluid in which inertia forces are neglected the per- 
turbation velocity components at any point (x,y,x) may be represented by 
(uo, vo, wo) of $2.1 with F2 replacing PI. 

As mentioned earlier the mirror-image technique does not produce useful 
results for the double-wall situation, mainly because the boundary conditions 
on the two walls have to be applied one after the other in a continuous iterative 
process, which leads after some lengthy calculations to a divergent series expres- 
sion for the drag. On the other hand, Faxen (1923) (see also Happel & Brenner 
1965, pp. 323-324) considered the problem of a sphere falling between two paral- 
lel walls and discussed a technique which enabled him to apply the no-slip 
condition on both walls at the same point of procedure. 

The first step in adapting this procedure to the present problem leads to the 
identity 1 1 

where k = (a2 +P2)S. This double integral and its partial derivatives with respect 
to x, y and z may be used to express the unbounded solution (uo, vo, wo) entirely 
in terms of the Cartesian co-ordinate system; thus 

exp [i(m - ax‘ + By) - k Iz I] da d/3, < = 5Ja ii 

while uo and wo are given by similar expressions with the term in braces replaced 
by - a/3( 1 + klzl)/k3 and - i/3z/k respectively. 

Paxen established that one general solution of the creeping-motion equations is 

where the gf (j = 1 , 2 , 3 )  may be arbitrary functions of a and B. He also gave 
another general solution (u**, v**, w**) which can be obtained by replacing 
k by - k and g? by gT* everywhere in the expressions for (u*, v*, w*).  

The full perturbation velocity solution (u, v, w) is expressed at  this stage as the 
sum of the solutions (uo, vo, wo), (u*, v*, w*)  and (u**, v**, w**); and from this the 
boundary conditions 

u,+u*+u** = 0 , v,+v*+v** = 0 and w,+w*+w** = 0 
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on the walls x = L yield six linear equations for the unknown functions 
g? and gf*. Thus Faxen's technique enables the no-dip condition to be applied 
on both walls simultaneously. The solution set of these equations is 

where G (a, /3, z )  need not be written down explicitly because the particular result 
required for this paper is 

4 4pZL(ezkL - kL e2kL - 1 - kL) 2P2 
G(aypy = %+ kZ(e-2kL + 4kL - eZkL) 

Two corresponding expressions for the other velocity components u and w 
could be given, but as in the previous section an approximation for the unknown 
strengths Fz can be obtained via slender-body theory using only the streamwise 
velocity component. 

Therefore, from (2 .8) ,  the boundary condition w = U, at any point (xs,ys,x.~) 
of the rod's curved surface yields 

With ys = R, cos 8 and x, = R, sin 8, these four integrals can each be expanded 
for small R,/Z, where it is assumed that ROIL is not larger than R,/Z. (In the experi- 
ments performed L = 15.1 cm while 1 ranged from 1-25 to 4-45 cm.) 

A procedure similar to that discussed in 52.1 leads to the following integral 
equation for Fz (again dropping the s subscript): 

47rpUz = Fz(x) - + i + & l n  l-- 6 ( 3 
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Using the same iterative procedure as before, the approximate solution of (2 .9 )  
is seen to be 

.F12(x) = 47r,uU2 [c + @{ - 4 - +In (1  - 9 / 1 2 )  + E2(x)}  + O ( 8 )  + 0 (€2 R,/l}], 

where 
sin a1 

eiax G(a, p, 0) - da d/3. 
a 

The total drag on the rod is thus given by 

= 4n,uU2d 12 + 8 (W, - 1 - 'f +' In (1 - [2) dc + O(e2) + 0 r?)] , (2.10) 
2 -1 

where 

with a = k cos q5, /l= ksin 4, K = ICL and H ( K ,  $) defined by 

{ 4K(ez-Kem-1-K)  
( e Z + l ) H  = 4-sin2q5 2 -  

(e-2K + 4K - e2K)  

Again, comparison with the result for unbounded fluid shows that the dominant 
part of the drag due to the wall's presence is 471,uU2 lW2 c2. As l/L -+ 0, 

4K(e2K- Ke2"- 1 - K )  

numerical evaluation of the integral gives 

W2 = 2*6771/L + O(Z/L)3, 

a result which is the same as would be obtained from Brenner's formula (1962) 
for a body falling midway between two parallel walls and at  a distance from them 
which is large compared with a typical length measurement of the body. 

From (2.10) the drag coefficient is 

C, = S2/4n,uU21 

as E + 0, which will be compared in the latter part of the paper with the experi- 
mental drag coefficient 

based on an experimentally measured U,. 

c2, = R 3 f  -A gP,uU2 (2 .12)  

2 . 3 .  Vertical orientation, two parallel plane walls 
Consider a rod in a vertical orientation moving longitudinally with velocity U, 
parallel to and midway between the same two walls of the problem in $2.2. The 
methods of that section can then be applied to a line distribution of Stokeslets 
that are directed along the segment of the rod's axis that lies inside the cylinder. 
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This leads to a slender-body approximation for the Stokes-flow drag on the rod 
given by 

s3 = 27rpU3d [ 2 + €  { w3+1-- ' ~ + l l n ( l - g Z ) ~ ~ ) + O ( ~ z ) + O  
2 -1 

where 

the form for S3 being similar to (2.10) except for an overall factor of 4 and 
one sign change in the terms of O(e2). The dominant part of the drag due to the 
wall effect is 21rpU,I W, e2, and as IIL + 0 

w, = 1.339Z/L + O(I/L)3, 

which is again consistent with Brenner's (1962) results. 
As 6 -+ 0 the drag coefficient C3 is defined by 

C3 = F 3 / 4 ~ p U 3 1  

and this will be compared with the experimental drag coefficient 

c3~ = W P -  P') SI2Pu3, 

based on an experimental value for U,. 

(2.14) 

(2.15) 

3. Experimental procedure 
A steel-framed tank with a rectangular base 104 cm by 30 ern and four plane 

non-distorted glass walls of height 59 ern was placed in a controlled-temperature 
room and filled to a depth of 56 cm with liquid glucose. 

Welding rods and wires, cut and machined into various lengths, proved suitable 
circular cylinders for the experiments, as did the axles of a Meccano set available 
commercially. From the measurements of each cylinder's mass, length and dia- 
meter, its density p was calculated and is presented in table l together with the 
length-to-thickness ratios (to give some idea of slenderness) and the values of 
the thickness-to-length parameter 8. 

Note how slowly the parameter e varies: while the length-to-thickness ratio 
increases from 10 to 100, E changes only from 0.34 to 0.19 and to achieve a value 
of 0.1 for e would require 1/R, = 11 000, which is impractical for experiments of 
this nature. The theory involves expansions in powers of E: and so will give best 
results when e is small. The values of e which had to be used are not particularly 
small and so provide a fairly severe test of the theory, but since they refer to  
slender bodies with practical length-to-thickness ratios a consistentIy large 
difference between the theoretical and the experimental results would indicate 
that slender-body theory remains a theory only. 

In  the first of three series of experiments nine different rods were used. Each 
rod fell in. a horizontal orientation with its axis of symmetry parallel to and at  a 
distance 1.1 cm from a long wall, while its centre was equidistant from both short 
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Material 

Welding rod 
Welding rod 
Meccano rod 
Copper-coated 
steel rod 

Piano wire 
Welding rod 
Thin wire 
Welding rod 
Wire 
Welding rod 
Wire 
Thin wire 
Welding rod 
Welding rod 

21 (om) 

2.50 
2.89 
2.96 
2.99 

3.14 
3-74 
3.98 
4.37 
4.93 
5.89 
6.59 
7.06 
7.47 
8.90 

Ro (om) 

0-080 
0.080 
0.076 
0.160 

0.050 
0.080 
0.036 
0.080 
0.044 
0.080 
0.044 
0.036 
0.080 
0.080 

JiRO 
15-6 
18.1 
19-5 
9.3 

31.4 
23.4 
55.3 
27.3 
55.5 
36.8 
74.2 
98.1 
46.7 
55.6 

6 

0.291 
0.279 
0.273 
0.343 

0,242 
0.260 
0.213 
0,250 
0.212 
0.233 
0.200 
0.190 
0.221 
0,212 

P (glml) 
7-820 
7.820 
7-652 
7-986 

9.895 
7.820 
7.467 
7.820 
7.698 
7.820 
7.698 
7.467 
7.820 
7.820 

TABLE 1. Dimensions and charactoristios of circular cylindrical rods 

walls. This position and orientation was achieved by making the rod slide from a 
thin metal strip whose end was just below the free surface of the glucose. 

The second series of experiments used twelve rods, seven of them having been 
used in the previous series. Again each rod fell with a horizontal orientation but 
the position of the fall was altered to halfway between both the long and the short 
walls, that is, down the centre of the tank. 

An equivalent set of twelve rods was used in the h a 1  series of experiments, in 
which each rod fell with a vertical orientation down the centre of the tank. 
This orientation was obtained by releasing a dry rod down a glass tube clamped in 
a vertical position above the surface of the liquid. 

A thermometer was suspended in the glucose for the duration of the experi- 
ments and the temperature was recorded frequently. The readings indicated 
that the temperature of the liquid varied inside the range for the surrounding 
air (20 "(2-22 "C), and that these variations took place on a time scale much longer 
than the recorded times of fall. Preliminary experiments with spheres of various 
sizes established that in this temperature range the glucose behaved as a New- 
tonian fluid with a dynamic viscosity of approximately 50P and a density (p')  
equal to 1-396 g/ml. 

After each rod had fallen to the bottom of the tank a standard sphere (mass 
0.032 g, radius 0.089 em) was released at the centre of the surface and timed over 
a 20 em fall. The value of ,u can then be obtained from the well-known formula 
related t o  the Stokes-flow drag on a sphere in unbounded fluid, namely 

P = 2a2 (Ps -P ' )  g/9% 

where ps-p' = 9.434g/ml with V,, a and ps representing the sphere's terminal 
speed, radius and density respectively. There are two possible sources of error 
in using this result. One is associated with a correction for the effect of the con- 
tainer walls and is negligible because of the size of the sphere in comparison with 
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its distance from the nearest wall. The other, due to inertial effects, is less than 
8% for the spheres used. 

However in the formulae to be verified ,u only occurs in the three alternative 
forms of the drag coefficient given by (2.7), (2.12) and (2.15), so these can now be 

writtenas cj, = 9R~(p-p’)U,/4aZ(p,-p‘) uj (j = 1,2,3). (3.1) 

The two series of experiments down the centre of the tank were conducted 
together. A complete run of the experimental procedure consisted of successive 
falls of (i) a rod in a horizontal orientation, (ii) a standard sphere, (iii) an equiva- 
lent rod in a vertical orientation and (iv) a standard sphere. When the sphere 
times agreed the experimental run was considered to have been performed at zt 

constant viscosity, and then the rod times could be used to give a value of the 
ratio of the longitudinal and transverse speeds of fall for that particular rod. 

Using a Pye laboratory clock in conjunction with a cathetometer, at  least three 
times of fall were recorded for each rod from a level 8 cm below the surface of the 
glucose to a level 8cm above the bottom of the tank, this being done in stages 
of 5 or lOcm depending on the slowness of the rod’s fall. The averages of these 
times over the central 20 em of fall appear in the tables of the next section. 

4. Comparison and discussion 
The results for each series of experiments are tabulated in tables 2-4, each of 

which contains six columns. The first column contains the rod length (21) for 
identification purposes. The next two columns record the falling time of a stand- 
ard sphere (t,) and the average falling time of each rod ( t j ; j  = 1,2,3); a simple 
quotient then yields the ratio lJUj of the sphere’s speed to the rod’s speed which 
appears in the fourth column. Column five contains the value of the experimental 
drag coefficient for each rod calculated from equation (3. l ) ,  while the final column 
gives the theoretical value of the drag coefficient for each rod calculated for table 2 
fromequation (2.6), for table 3 from equation (2.1 1) and for table 4 from equation 
(2.14). 

For the two series of experiments involving the fall of horizontal rods the com- 
parison of drag coefficients shows that the theoretical value is at  most 12% 
less than the experimental value. In  particular for a horizontal rod falling down 
the centre of the tank, ten of the rods had theoretical and experimental results 
agreeing to within 5 yo or better. On the other hand, that series of experiments 
concerned with the fall of vertical rods down the centre resulted in a difference 
between theory and experiment ranging from 12 to 24 %. 

A feature of each table is that the theoretical analysis predicts values that are 
less than the experimental results in most cases. This is not surprising since the 
theoretical formulae tested are based on the presence of either one or two walls 
only, and do not take account of the remaining walls. However, it appears to 
happen often in Stokes-flow wall-effect theory that the drag caused by two 
walls is slightly less than the cumulative drags due to each wall separately 
(see Happel & Brenner 1965, pp. 327-328). Assuming this happens here also, an 
upper bound can be obtained in each case for the extra drag produced by these 
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Drag coefficients C,  

21 (em) t.3 ( s )  t,  ( s )  U,jU, Observation Theory 

2.50 
2.96 
2.99 
3.14 
3.98 
4.37 
4.93 
6.59 
7.47 

7 1-5 
7 1.0 
72.0 
72.0 
79.0 
72.0 
72.0 
82-0 
73.0 

40.0 
44.5 
13.0 
72.0 

191.5 
41.5 

103.0 
127-0 
37.0 

0.559 
0.627 
0,181 
1*000 
2-424 
0.576 
1.431 
1.549 
0,507 

0.692 
0.682 
0.920 
0.640 
0.574 
0.713 
0.535 
0-579 
0.627 

0.697 
0.668 
0.893 
0.583 
0.522 
0.649 
0.540 
0.528 
0.617 

TABLE 2. Comparison of experimental and theoretical drag coefficients for a horizontal rod 
falling with its axis parallel to and at a distance 1-1 ern from a single plane vertical wall 

21 (em) 

2.50 
2.89 
2.96 
3.14 
3.74 
4.37 
4.93 
5-89 
6.59 
7.06 
7.47 
8.90 

t s  (s) 

72.0 
71.5 
67.0 
67.0 
69.0 
69.0 
70.0 
70-5 
74.0 
68.5 
68.5 
68-0 

t ,  ( s )  

33.5 
33.0 
34.5 
56.0 
30-0 
29.0 
82.5 
29-0 
82.0 

112.0 
26.0 
25.5 

Val u, 
0465 
0.462 
0.515 
0.836 
0435 
0,420 
1.179 
0.411 
1*108 
1,635 
0.380 
0.375 

Drag coefficients C,  
-7 

Observation Theory 

0.576 
0.57 1 
0.560 
0,535 
0-538 
0,520 
0.441 
0.509 
0.414 
0.387 
0470 
0.464 

0-567 
0.547 
0.537 
0.477 
0.517 
0.500 
0427 

0.408 
0.387 
0.454 
0.442 

0.472 

TABLE 3. Horizontal rod falling with its axis parallel to and midway between 
two parallel vertical walls which are 30.2 ern apart 

21 (om) 

2.50 
2.89 
2.96 
3.14 
3.74 
4.37 
4.93 
5.89 
6.59 
7-06 
7.47 
8.90 

t.7 (8) 

72.0 
71.5 
67.0 
67.0 
69.0 
69.0 
70.0 
70.5 
74-0 
68.5 
68.5 
68.0 

t 3  (8) 

24.5 
24.0 
24.0 
38.0 
20-0 
19.5 
57.0 
19.5 
54-5 
76.0 
17.5 
17.0 

usi u3 
0.380 
0.336 
0,358 
0.667 
0-290 
0.283 
0,814 
0.277 
0.737 
1.110 
0.256 
0.250 

Drag coefficients C,  
-7 

Observation Theory 

0421 0.363 
0-415 0-346 
0.390 0.338 
0.363 0.293 
0.359 0-320 
0.350 0.307 
0.305 0.254 
0.343 0.283 
0-275 0.238 
0.263 0.224 
0.316 0.268 
0.310 0-257 

TABLE 4. Vertical rod falling with its axis parallel to and midway between 
two parallel vertical walls which are 30.2 em apart 
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extraneous walls. These appear to be less than 4 % for the first series of experi- 
ments and less than 3 yo for the other two series. 

Other sources of extra drag are the free surface of the glucose and the bottom 
of the tank. Although difficult to estimate, it seems plausible to assume that they 
have a small effect over the central 20 ern of the measurement. This assumption 
is supported by the consistency of the time of fall through each 5 or 10 cm stage. 

Apart from these positive increments to the theoretical drag coefficients there 
are error terms of unknown sign associated with formulae (2.6), (2.11) and (2.14). 
The values quoted in table 2 for the theoretical coefficient C, include the numerical 
evaluation of and the expansion error terms are of order 0-5-1-5% (for 
e4 terms) and 0-5-2 % (for s2R,/L terms). 

Terms of order €3 are not explicitly included in the theoretical expressions for 
C2 and C3 as they are difficult to evaluate numerically. The expansion error terms 
in these two results are then of order 2-5 yo (for c3 terms) and 0-2-2 % (for s2R,/Z 
terms). 

The maximum percentage error for the experimental drag coefficients Cj, 
is 1274, obtained from (3.1) through probable measurement errors of 1% in 
R,, 1 yo in a, 2 % in ps-p’, 2 % in p -p’, 2 % in &and 2 % in Q,.. 

Now the Reynolds number of the flow associated with a standard sphere is 
of O( 1 0 3 ,  while that for the flow due to the falling rods ranges from 0.02 to 0.2 
(based on rod lengths) or from 0.1 to 0-4 (based on the half-distance L between the 
two walls). Therefore, the comparison of the experimental results with those 
obtained from a Stokes-flow analysis seems reasonably justified. 

The experimental and theoretical drag coefficients are in good agreement for 
rods falling with a horizontal orientation, but the error bounds cannot account 
for the discrepancy in the results for rods falling with a vertical orientation. 
Rosen (1972) noted a similar discrepancy when comparing experimental and 
numerical results for non-slender bodies of other shapes falling longitudinally. 
Perhaps inertial effects or the top and bottom boundaries of the glucose have a 
greater influence on the longitudinal-fall experiments than on the transverse- 
fall experiments. Alternatively, limitations of the theory in approximately re- 
placing the slender body by a line distribution of Stokeslets may possibly cause 
errors near the ends of the rod that are more significant for longitudinal flow 
than for transverse flow over the range of e tested. 

The second and third series of experiments were designed to produce experi- 
mental values for the ratio ( U3/U2) of the speed of fall of a rod in a vertical orienta- 
tion to its speed of fall in a horizontal orientation over diserent values of 8. 
Twelve values of this ratio between 1.36 and 1.51 can be obtained from tables 3 
and 4, and - despite the shortcomings of the third series of experiments- these 
indirectly support the now well-established theoretical fact (Weinberger 1972) 
that the ratio in an unbounded fluid approaches the limit 2 from below as B --f 0. 
It was recent assertions concerning the value of this ratio which led to the current 
upsurge of interest in slender-body theory. 

The author acknowledges that the initial stimulus for this work came from dis- 
cussions with Professor G. K. Batchelor. Preliminary experiments were carried 
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out in conjunction with Mr T. Parkes, also of the Mathematics Department at  
Duntroon, and the author is grateful for his help in this developmental part of 
the work. Appreciation is also expressed to the Chemistry Department a t  Dun- 
troon for the use of the controlled-temperature room and other equipment, to 
Mr C. W. Thomas for his efforts with the diagram, and to the referees for helpful 
comments. 
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